
REPORT

HYPERLEDGER URSA
CODE REVIEW

ABSTRACT
Contains results of review of the Hyperledger URSA codebase.

DATE
March, 2022



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Table of Contents

Executive summary 3

Engagement Scope and process 3

Findings Summary 4

Copyright Notice & Disclaimer 5

The Digital Identity Laboratory of Canada 5

Hyperledger URSA Code review 6

Introduction 6

Scope in detail 6

Findings in detail 10

General Observations and Recommendations 10

Security Defects Raised During Review 20

Appendix A - About the Authors 28

© IDLab, 2022 2 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Executive summary
The Digital Identity Laboratory of Canada (IDLab) was engaged to perform a
security and cryptography code review of the Hyperledger URSA crypto library.

Hyperledger URSA is a shared cryptographic library used to avoid duplicating
other cryptographic work and increase security in the process. The library is an
opt-in repository (for Hyperledger and non Hyperledger projects) to place and use
crypto.

Project sponsors, several Canadian public sector entities, and Interac, recognise
that end users rely on strong security to deliver the high levels of assurance
required of important consumer transactions with their governments and their
financial institutions. Many of the world’s leading advancements in decentralized
identity, several originating in Canada, rely on the Hyperledger family of
technologies. As such, the URSA library is a key component, depended upon to
provide the security overlay for decentralized identity.

Engagement Scope and process

The URSA library review included:

● a code review that examined:

○ entry points
○ coding standards
○ data storage and transfer
○ APIs and their security
○ third party library usage
○ language issues
○ logic flaws

● Cryptography best practices including examination of:

○ cryptography and key management
○ entropy
○ best practice cryptography usage

The review did not include an assessment of the cryptographic algorithms
themselves, their math or suitability. We limited examination to assessment of
sound implementation within URSA.

The examination and validation process included checkpoints with the project
sponsor group as well as ongoing consultation with a key group of URSA
community contributors and primary architects of the codebase.

© IDLab, 2022 3 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Findings Summary

In general, the review noted few relatively minor security defects and some
general observations for library improvement.

These can be briefly described as follows:

● Minor build issues

● Cautions to consider when building, primarily with third party libraries or
integrations

● Minor issues related to lack of support for message augmentation

● Minor issues related to subgroup validation

● An issue related to public key validation

Please refer to the “Findings in Detail” section of this report for more detail.

These findings were reviewed with URSA community experts and the Findings
detail includes reaction and identification of actions to be taken (e.g., noting the
issue for inclusion in the normal workflow for addressing Problem Reports).

© IDLab, 2022 4 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Copyright Notice & Disclaimer
IDLab always retains copyright of all test reports. IDLab clients obtain a perpetual,
irrevocable license to publish, use, disseminate and translate, but are not allowed
to modify content in any manner except visual presentation. For greater clarity,
portions of reports or extracts of results prepared by IDLab may not be published
when publishing only such portions or extracts could mislead the reader about
the reliability of the solution or process assessed by IDLab.

A test report indicating that a solution is compliant with the standard or
framework it has been evaluated against shall never imply an endorsement from
IDLab that the solution is specifically suited to a particular use case. The test
reports prepared by IDLab are always in relation to a specific version of a digital ID
solution or implementation and to a specific version of the standard or
framework, and must be interpreted and relied upon as such.

The Digital Identity Laboratory of
Canada
The Digital Identity Laboratory of Canada (IDLab) is an independent Canadian
non-profit entity dedicated to advancing digital trust by breaking down barriers to
digital ID adoption. The IDLab promotes technical conformity and interoperability
of user-centric digital identity solutions. The IDLab is not an incubator and does
not develop or sell digital identity solutions. Our mission is to accelerate the
adoption, development and knowledge of compliant and interoperable digital ID
solutions.

We accomplish this mission by delivering education, assessment, advisory and
sandbox services. When delivering those services, IDLab preserves its neutrality
and independence by complying with its Policy on the Limitations of Commercial
Activities.

© IDLab, 2022 5 / 28

https://idlab.org/en/
https://idlab.org/en/policy/
https://idlab.org/en/policy/


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Hyperledger URSA Code review
Introduction

The URSA library is written in Rust with some of its dependencies being
implemented in C. We examined the latest code release (V0.3.7) available at the
time of project commencement.

The code examined may be found here1.

Third party dependencies include:

● openssl 1.1.0j

● libsecp256k1

Scope in detail

The code review has involved reading the code in its entirety as well as employing
scripts to look for common issues. Code examination included:

1. Entry points - entry points of the libraries are numerous for two principal
reasons: firstly, the libraries define a large number of functions with public
scope, secondly bindings are also present which constitute further means
to call into the library from client code. Approximate entry points:

● C linkage: ~138

● Rust: ~2732

2. Coding standards – validate and assess the coding standards utilized to
implement the source code and whether this standard is stringently
enforced through the use of secure/documented coding inclusion/merge
processes.

3. Cryptography and key management, including but not limited to, random
number generation, key generation, signing, verification, identify
backdoors.

4. Data storage and transfer – assess how the code accesses the local
filesystem of the machine the code is being executed on. In this case, since
the code is a library meant to be utilized by client code, the security of data

1 https://github.com/hyperledger/ursa/tree/v0.3.7
(34ef3926b633a5eaff5b220c40005bbc8cd04861)

© IDLab, 2022 6 / 28

https://github.com/hyperledger/ursa/tree/34ef3926b633a5eaff5b220c40005bbc8cd04861


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

storage is the responsibility of the client code barring extenuating
circumstances (such as caching, temporary file creation, etc., that may be
created upon execution flow from client to library code).

5. APIs and API security – the API of the tested libraries is essentially the entire
source code base since the source is available and thus modifications and
entry points can be created as the developers see fit. The security of the
entry points is thus assumed to be performed from the viewpoint of the
client programmer linking their code to the library through any entry point.

6. Language issues including but not limited to, memory issues, race
conditions, uncaught exceptions.

7. Logical flaws in implementation.

8. Use of/Third Party Libraries - assess their suitability for use by the URSA
library.

We also performed a limited assessment of cryptographic best practices, focused
on ensuring that the use of cryptography within the library is secure. This
included examination of:

1. Entropy – where random values are being generated (e.g. for key
generation or for challenge response protocols) we examined the method
of random number generation to determine appropriateness.

2. Best practices – we examined key lengths and use of curves (for Elliptic
Curve cryptography using external guidance (such as that from NIST) to
assess whether best practices are being followed in the use of
cryptography.

3. Best practice implementation of published algorithms.

NOTE: we did not assess the cryptographic algorithms themselves or the
academic merit of the implementation of those algorithms. For the avoidance of
doubt, the intent here was to say we did not review the math foundation of the
cryptographic algorithm, we have however assessed that the published algorithm
has been implemented correctly within the URSA code library.

© IDLab, 2022 7 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Methodology notes

The table below provides additional insight into some of the key components of
our examination methodology, identifying specific elements of the URSA library
examined. This is not an exhaustive list, noting only some of the more important
items as we perceive them to provide additional context for some of the findings
in detail to follow.

Component Comments

Validation on public keys
All operations that operate on
points in public keys must first
validate those keys. We identified
all operations that operate on
points in public keys, and through
code inspection verify that those
keys are validated before the
operations are performed.

The BBS signature scheme
(https://identity.foundation/bbs-signature/draft
-bbs-signatures.html) specifies that the sign,
verify and proof operation of the BBS scheme
must validate public keys being used. These
operations are implemented in the following
source locations:

Signature generation:
Impl Signature
:ursa\libzmix\bbs\src\signature.rs lines 248-269

Blind Signature generation:
Impl BlindSignature
:ursa\libzmix\bbs\src\signature.rs lines 144-189

Signature verification:
fn Verify : ursa\libzmix\bbs\src\signature.rs lines
277-312

impl PoKOfSignatureProof
:ursa\libzmix\bbs\src\pok_sig.rs lines 293-322

Proof of Knowledge verification:
fn verify \libzmix\bbs\src\pok_sig.rs lines
342-430

Membership checks on
verification of a signature
When verifying a signature, the
verification algorithm should verify
that the signature point is an
element of the subgroup with
order r.

The BBS signature scheme
(https://identity.foundation/bbs-signature/draft
-bbs-signatures.html) specifies that the
membership check in the operation to verify a
signature should be performed.
The verify operation is implement in
fn verify in ursa\libzmix\bbs\src\signature.rs line
277-312

Randomness considerations The nonces used in signature proofs are not

© IDLab, 2022 8 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Nonces in signature proofs should
be generated from a trusted
randomness source.

generated within the URSA library but are
supplied as input data to the URSA library
APIS. The URSA library provides a method for
securely generating random nonces, and
example code documented within the library
source code shows their proper usage.

Side channel attack protection
Operations on the underlying
pairing-friendly elliptic curves
should run in constant time,
implementing the same sequence
of instructions and same memory
access to protect secret keys for
side channel attacks.

All multiplication and other complex
operations like modular exponentiation
operating on numbers larger than the native
register size will be susceptible to side channel
attacks. By the nature of the operation the
complexity of the calculation depends upon
the complexity and size of the input data.
Furthermore, since the URSA library is a
software implementation, wherein efficiency is
a design factor, no side-channel attack
protections are implemented.

Full source code review of
Hyperledger URSA library

Best practices code review techniques are too
lengthy to elaborate upon. Please refer to the
Scope description for additional insight into
the considerations used for basic code review.

Assess dependencies for any
known security vulnerabilities

Dependencies for the project are one of either
native code or RUST crates. While it is possible
to ascertain if a given dependency contains a
publicly known and disclosed vulnerability, the
number of dependencies required by the
URSA library and its components is too great to
exhaustively review all the code of said
dependencies.

Review build environment
The source code build environment
of the RUST language involves the
heavy reliance on third-party
components (crates) and their
building into the resulting project.
Securing the build environment in
this case is very important since
the malicious inclusion of Rust
creates containing potential issues
could completely compromise the
resulting builds of the Ursa/zmix
libraries and thus any software
utilizing/linked.

© IDLab, 2022 9 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Findings in detail
The findings below include a set of general observations and recommendations
and a number of security defects noted.

General Observations and Recommendations

1. Structure and maturity of the Hyperledger URSA library

Currently the URSA library is organised as two distinct libraries with which other
programs can link against, these are as follows:

libursa – the core cryptographic library.

o The library can be built either to require the use or linking of the
OpenSSL library for cryptographic support or use various Rust crates
implementing the same algorithms while not requiring non
memory safe Rust code.

libzmix – the core zero-knowledge proof library, built utilising the tools and
algorithms from libursa.

ursa_sharing – cryptographic secret sharing scheme implementations.

The Hyperledger URSA library is stabilising, but the structure of the resulting
libraries is in a state of flux. This is exemplified readily by recent merges into the
code base that seek to ‘crate’ the various aspects of the library in order to split the
implementation down into sub-crates sufficient to implement specific
cryptographic functions and schemes independently and piece meal enough to
mean users of the library can import only the crates that they require in order to
implement their functionality.

The current source code base includes the above 3 libraries, however, the
intention as stated is to convert/break said libraries into five crates:
ursa_accumulators, ursa_core, ursa_encryption, ursa_sharing[1],
ursa_shortgroupsignatures, ursa_signatures.

Windows build – mismatch of library names

o The URSA library documentation on building from source
(https://github.com/hyperledger/ursa#building-from-source),
indicates that the build will result in artefacts libursa.dll and
libursa.lib for a windows build, a build from the 3.7.0 source code
succeeds without reporting any error but creates artefacts ursa.dll
and ursa.lib and not libursa.dll or ursa.lib.

© IDLab, 2022 10 / 28

https://github.com/hyperledger/ursa#building-from-source


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Cargo build issues – several aspects of the source either fail to build or fail
to build unit tests and fail to execute unit tests.

o The ‘asm’ feature, so-called because it intends to be linked against
‘assembler’ optimised versions of the underlying cryptographic
primitives (leveraging OpenSSL) fails to build from the sources
obtained from the GitHub repository using the stable and nightly
RUST compilers and associated toolchain.

o A small number of unit tests are currently failing to execute, however
upon inspection this is due to the developers making simple
mistakes in the definition of the unit tests themselves and there is
no serious underlying failure or mistake.

Bindings lacking maintenance – the libraries provide a C linkage binding
from which other languages can be bound to the RUST versions of the
libraries. However, during the testing of these bindings a number of issues
were found with the binding declarations for C linkage mismatching the
underlying symbol with respect to the parameters to be provided to the
function for correct functioning.

o An example of this issue relates to the function ` random_bytes`
function which defines a symbol with a single parameter while the
underlying function takes 3 parameters resulting in a crash when the
function is called from within a C program:

frame #16: 0x00000001000d2556
ursa-test`random_bytes(output=0x000000000000000a, bytes=140702053824232,
err=0x00007ff7bfeff6f8) at mod.rs:309:15

frame #17: 0x0000000100000f6e ursa-test`URSARandomBytes + 14

frame #18: 0x0000000100000f4b ursa-test`main + 27

Feedback from initial Hyperledger URSA community review:

There are intentions on the current roadmap to refactor the library to
clean up several minor issues. These issues should be addressed
during that process and this report has helped inform this upcoming
effort. Additional information regarding the URSA’s project health and
current plans is available in the Q1 2022 Hyperledger URSA project
updates report.

© IDLab, 2022 11 / 28

https://wiki.hyperledger.org/display/TSC/2022+Q1+Hyperledger+Ursa
https://wiki.hyperledger.org/display/TSC/2022+Q1+Hyperledger+Ursa


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

2. Dependencies used in Hyperledger Ursa Library

URSA can optionally use the following external dependencies:

● openssl 1.1.0j or greater (Written in C/assembler)
● libsecp256k1 (Written in C)

URSA with ASM

Recommendation: when URSA code is compiled and built with assemblies (ASM)
from external dependencies the following aspects must be considered.

● Review if any known vulnerabilities exist in the external dependency
(e.g., CVE-2021-23841 OpenSSL versions 1.1.1i and below are affected
by this issue)

● Any version change of the external dependency must be audited.

URSA with Rust only and no ASM

Recommendation: with Rust only approach, the following aspects must be
considered.

The cryptographic implementation in Rust only code must be audited for
correctness.

Feedback from initial Hyperledger URSA community review:

This can be characterized as an implementation caution. There are a
number of those noted in this report and we will continue to work
with the URSA community to decide how to better expose this type
of usage advice.

© IDLab, 2022 12 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

3. Manual check needed to confirm Nullifying sensitive Rust Objects

In Rust, Zeroize crate/dependency (https://docs.rs/zeroize/latest/zeroize/) nullify the
buffers implicitly. However, the Rust objects do not make it clear whether Zeroize
is attached. Furthermore, while the Zeroize crate seems to have permeated the
URSA library source code, it does not appear to have made its way into the
dependency list of the zmix library.

Recommendation: Therefore, we need a manual check of all sensitive objects to
ensure Zeroize is applied correctly.

To facilitate this, a process of implementing simplistic ‘users’ of the URSA library in
the C programming language is to be performed wherein calls to the URSA library
will be made with known inputs and the outputs verified while memory profiling
is performed (in a debugger) can ascertain if memory is cleared upon returning
from the library back to the caller. It is expected, the valid outcome, that the
resulting memory profile will reveal that while the memory held by the calling
program is left intact, the internal processing of the URSA library will leave
minimal information lingering in memory after the return of program control to
the caller.

Feedback from initial Hyperledger URSA community review:

This will be noted as an issue for further investigation and potential
enhancement. At the very least, it will be handled in the same
manner as those items we have noted herein as “implementation
cautions”.

© IDLab, 2022 13 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

4. Suitability of Rust Programming language for secure implementation

RUST, as a programming language aims to afford the programmer the ability to
write low-level, highly performant code, compliable to optimised machine code
while focussing on memory safety and thus higher levels of security assurance
compared to the traditional C/C++ pair. In essence the utilisation of the Rust
programming language effectively shields the resulting application, provided no
linking or control flow passes to non-Rust code, from the following types of
memory related issues:

● Buffer overflow
● Use-after-free (UAF) - wherein a heap/dynamically allocated pointer is

dereferenced after being subjected to the deallocation operation.
● Double-free – wherein a heap/dynamically allocated pointer is subjected to

the deallocation operation more than once.
● Null dereference – attempting to access the zero-page.
● Uninitialized memory access – reading data from memory that has not

been initialised with a known value.

In modern parlance, the notion of ‘safe’ and ‘unsafe’ Rust is taking hold wherein
Rust code that offers integration with programming languages that do not offer
the same level of memory safety is deemed to be ‘unsafe’ while pure Rust
implementations are deemed ‘safe’. In general, the application developer should
tend towards utilizing Rust exclusively if that is a potential possibility when
developing a secure solution.

Feedback from initial Hyperledger URSA community review:

This can be characterized as an implementation caution. There are a
number of those noted in this report and we will continue to work
with the URSA community to decide how to better expose this type
of usage advice.

© IDLab, 2022 14 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

5. Suitability of other languages calling into RUST

In a previous section we had highlighted the notion of ‘safe’ and ‘unsafe’ Rust
code. This determination is almost entirely defined by the use of other
programming languages to implement functionality that is either called from
Rust code or makes calls into Rust code (when Rust is used to develop a library to
be used by other code). While there are no security concerns immediately
presented through the use of Rust code or the integration of such code into other
projects implemented in other programming languages, it is highly
advantageous to keep as much of the implementation in native Rust as much as
is possible in order to leverage the memory safe aspects of the language. This is
particularly important when implementing and utilizing cryptographic primitives
since Rust offers complete control over the allocation and deallocation of memory
and the subsequent reference counting required to effectively and efficiently
wipe and thus zero memory leaving little information leaked.

Currently the URSA library provides extension and linking to the C programming
language by default (this can be disabled, and symbols removed from the
resulting libraries). It is thought that this functionality was explicitly chosen by the
developers since the C programming language and its symbolic linkage can be
integrated into, and called from, almost any other modern programming
language. Indeed, the Hyperledger developers distribute ‘shims’ or slim
interoperability libraries for URSA for the following programming languages:

● Python – https://github.com/hyperledger/ursa-python

● Go - https://github.com/hyperledger/ursa-wrapper-go

It would be logical to assume that the developers will seek to add further
common programming languages to this list over time with Java and C# being
the most logical to include.

Feedback from initial Hyperledger URSA community review:

This will be considered by the URSA community for downstream
inclusion in their roadmap when sufficient demand becomes
apparent. To date JAVA and C# demand has been very low. BBS+
Signatures, used more widely, does have a wider variety of
integration tools.

© IDLab, 2022 15 / 28

https://github.com/hyperledger/ursa-python
https://github.com/hyperledger/ursa-wrapper-go


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

6. Use of code obfuscation

Utilisation of obfuscation techniques in securing compiled code is typical within
the industry when the security of said code is of the utmost importance. In
general, however this is only performed when the execution environment cannot
be trusted, or could be considered compromised, in the general case (the most
likely scenario would be the code running on a mobile device which is portable
and of an unknown design/state). Another aspect commonly associated with
obfuscation is the use of integrity validation in the execution of the software. This
takes the form of trips and validation inserted into resultant binaries which
attempt to check the code as it is running in order to ascertain if the execution
environment of the code has been compromised or otherwise subverted at
execution time.

However, in the case of Ursa/zmix, any obfuscation applied to the resultant
libraries would mainly serve to reduce the speed of the resultant library and the
cryptographic operations with little to no benefit since the security of the
implementation is entirely within the algorithms themselves and nothing is
secret.

At the time of writing, no execution environment details are available for review
with respect to the potential deployment of Ursa/zmix and as a corollary no
defined judgement can be made with respect to their applicability in any project
linking to the Ursa/zmix libraries.

Recommendation: use of code obfuscation for the Ursa libraries is not
recommended, as it would deliver minimal benefits from a security perspective
while having a detrimental impact on performance.

Feedback from initial Hyperledger URSA community review:

Code obfuscation was deemed out of scope for the community. The
perceived issue this could raise has to do with timing attacks that
can be mitigated in other ways.

© IDLab, 2022 16 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

7. Security of the build system RE cargo and pulling third-party crates

As is common, and indeed by design, a Rust code base build system requires a
large number of third-party code crates which require obtaining from public
sources prior to the code being built and the resulting binaries produced. The
security of this process is of the utmost importance and should be performed in a
secure environment, isolated and automated (CD/CD).

The URSA and zmix libraries are built in the standard mechanism of other Rust
code bases and utilize the cargo template wherein dependencies are enumerated
in a workspace ‘Cargo.toml’ file while instructs the cargo build toolchain which
crates to obtain and build as part of the build process. In general, this will not pose
a problem, and indeed in the case of URSA, the extensive unit tests should be
sufficient so as to prove that the code for the crates brought into the build process
operate as intended. However, to create certainty, a ‘Cargo.lock’ should be
enforced so as to lock the dependencies pulled in as part of the build process to
versions controlled explicitly by the lock file. These are enforced through the use
of cryptographic signatures on the crates’ contents.

Recommendation

These lock files should ideally be stored in a repository locally when building and
optionally included into a fork of the URSA library repository by means of a
sub-module.

Feedback from initial Hyperledger URSA community review:

This can be characterized as an implementation caution. There are a
number of those noted in this report and we will continue to work
with the URSA community to decide how to better expose this type
of usage advice. The community will also consider this in more
detail for potential enhancement to the library.

© IDLab, 2022 17 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

8. Lack of timing-based side-channel attack protection

The software nature of the library necessitates the efficient functioning of the
library with respect to the cryptographic operations utilized/implemented. As a
corollary the algorithms do not implement protections against side-channel
attacks since they are implemented to be efficient. The operations used are often
by their nature non-constant time (or even linear in the size of the inputs) and as
such side-channel attacks are immediately applicable depending on the
execution environment of the infrastructure/code linked to the URSA library.

The exploitability of any side-channel attack is speculated to be extremely
complex, requiring incredibly high levels of access to the infrastructure the code is
being executed on. Thus, the exploitability of the issues is highly dependent on
the execution environment the targeted code is being run in and the degree of
access a would-be attacker has to the environment and/or network through
which any results of the computations are disclosed over.

In the case where the code to be attacked is executed within a server
environment, the physical exploitability is speculated to be close to zero if the
infrastructure itself can be said to be highly constrained, that is inside a highly
secure data centre where physical access to machines is easily controlled.
Furthermore, given the high computational throughput, access to the physical
network in order to aid with the timing attack is highly unlikely to provide any
advantage to the attacker.

However, the exploitability of such issues increases massively when the
algorithms are to be executed on a mobile device or a device with
minimal/constrained processing power. For instance, should the algorithms be
executed on a mobile device, timing attacks become possible, albeit still
extremely difficult for a combination of reasons. Firstly, access to the device would
still be required and secondly, if the attacker only has access to the network, then
network ‘jitter2’ would likely preclude any such attack since these devices typically
only possess wireless communications which are inherently more susceptible to
network ‘jitter’. In reality, networks would need to get so fast with such low latency
that the resulting risk is extremely low and there is no recommended mitigation
necessary to address this.

2 ‘jitter’ as it relates to a network is the time delay between packets or layer-2 and above
data can be sent across the network relative to low level protocols required to facilitate the
wireless medium.

© IDLab, 2022 18 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Feedback from initial Hyperledger URSA community review:

This had been considered in the past and considered to be an
extremely low risk. However, we will continue to discuss with the
URSA community to come to consensus on whether the points
raised herein warrant opening an issue for further investigation. The
sentiment is that some enhancements are likely to be defined to
eliminate typical approaches to this type of attack. Comprehensive
addressing of this issue will not be in scope.

9. BLS implementation does not support message augmentation

From examination of the source code, it would appear that the BLS code within
Libursa, does not support message augmentation. In a message augmentation
scheme, signatures are generated over the concatenation of the public key and
the message, ensuring that messages signed by different public keys are distinct.
Message augmentation is one technique to protect against forgery of an
aggregate signature by crafting a special public key. The Basic BLS scheme
protects against these attacks by insisting all signed messages are different, the
addition of proof of possession steps would also protect against such attacks. The
use of Basic BLS / message augmentation / proof of possession are options, but
since Libursa does not support message augmentation this option would not be
available to its users.

Feedback from initial Hyperledger URSA community review:

Further consideration of this comment will be done in the URSA
community with the potential addition of some enhancements being
defined and added to the roadmap.

© IDLab, 2022 19 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Security Defects Raised During Review

1. Known vulnerabilities in OpenSSL

Severity Low

Description

URSA uses OpenSSL 1.1.0j or greater. There are known vulnerabilities in version
1.1.0j

● CVE-2021-23841 affects OpenSSL versions 1.1.1i and below

○ https://www.cvedetails.com/cve/CVE-2021-23841/

● CVE-2019-1543 affects OpenSSL versions 1.1.0j and below

From the above issues, it is believed that only the CVe-2019-1543 entry would be
an issue in the case of URSA when built linked against OpenSSL since the other
CVE relates to aspects of the OpenSSL library which are not used nor linked to in
URSA.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1543

Related Documentation / Code

External Dependencies:
● openssl 1.1.0j

Analysis
When URSA code is compiled and built with assemblies (ASM) from external
dependencies they should be checked for any known security vulnerabilities. The
OpenSSL versions 1.1.1i and below are found vulnerable to potential denial of
service attack (see CVE-2021-23841 for details).
We recommend use of the latest version of OpenSSL, at the time of writing this is
1.1.1j, and also keep track of any vulnerabilities found in OpenSSL.
Recommendation
Use the latest version of openssl 1.1.1j

Feedback from initial Hyperledger URSA community review:
This can be characterized as an implementation caution. There are a
number of those noted in this report and we will continue to work with the
URSA community to decide how to better expose this type of usage
advice.

© IDLab, 2022 20 / 28

https://www.cvedetails.com/cve/CVE-2021-23841/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-1543


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

2. Implementation does not check that a signature is an element of a
prime order subgroup

Severity Low

Description

The BBS signature scheme [BBS-SS] specifies that the membership check in the
operation to verify a signature should be performed. As described in that
specification this check is required for the following reasons:

1. For most pairing-friendly elliptic curves used in practice, the pairing
operation e (Section 1.3) is undefined when its input points are not in the
prime-order subgroups of E1 and E2. The resulting behaviour is
unpredictable, and may enable forgeries.

2. Even if the pairing operation behaves properly on inputs that are outside
the correct subgroups, skipping the subgroup check breaks the strong
unforgeability property [ADR02].

There is no sign of any validation of the of the Subgroup order of the signature
verification algorithm:

fn verify in ursa\libzmix\bbs\src\signature.rs line 277-312

Related Documentation/Library

[BBS-SS] M. Lodder, T. Looker, A. Whitehead, “The BBS Signature Scheme”,
https://identity.foundation/bbs-signature/draft-bbs-signatures.html

[ADR02] An, J. H., Dodis, Y., and T. Rabin, "On the Security of Joint Signature and
Encryption", April 2002, https://doi.org/10.1007/3-540-46035-7_6

Analysis

The implementation of BBS signature verification in the URSA library should
implement checks of the signature subgroup, to maintain confidence in the
authenticity of signatures. Without such a check confidence in the unforgeability
of the signature is weakened which can have potential impact on the
non-repudiation of the data.

It should be noted that validation of the subgroup can be computationally
expensive although some techniques allow faster subgroup checks [BOW19].

A usable implementation of the sub-group check is available as a Rust crate
distributed by the Apache Foundation. Further information can be found in the
following location, https://github.com/apache/incubator-milagro-crypto-rust. The
resulting Rust crate is titled ‘amcl’ (https://crates.io/crates/amcl).

© IDLab, 2022 21 / 28

https://identity.foundation/bbs-signature/draft-bbs-signatures.html
https://doi.org/10.1007/3-540-46035-7_6
https://github.com/apache/incubator-milagro-crypto-rust
https://crates.io/crates/amcl


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Recommendation

Signature verification routine should be changed to implement checks on the
signature subgroup.

Feedback from initial Hyperledger URSA community review:

This will be raised as an issue and be subject to normal community
workflow to address issues. The community agreed that the
classification of this item as low risk was appropriate.

3. BBS Public key validator does not check the subgroup of the public key
or its generator

Severity Low

Description

The BBS signature scheme [BBS-SS] specifies that the public key validation
procedure (KeyValidate) should include subgroup checks on the public key and its
generators. A public key validate method is implemented in the URSA library in
libzmix\bbs\src\keys.rs starting at line 149, which checks if the generators of the
public key are not the identity element but does not perform any subgroup
checks.

The Apache Milagro library used by the URSA library when configured to be
compiled using Rust only code, does include an API to perform subgroup checks,
however we do not believe these are utilised by the URSA library to validate that
the signature is of the appropriate subgroup.

Without sufficient checks inadvertent or deliberate supplying of public key small
subgroups could lead to vulnerabilities as described here:

https://eprint.iacr.org/2015/247.pdf

Related Documentation/Library

libzmix\bbs\src\keys.rs starting at line 149

© IDLab, 2022 22 / 28

https://eprint.iacr.org/2015/247.pdf.


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Analysis

The BLS12-381 curve, like many other pairing-friendly curves, has elliptic curve
pairing groups G1 and G2 with nontrivial co-factors, which give rise to small
subgroup attacks. It is therefore recommended for implementations to check
that the points really exist within G1 and G2 as they are being decoded. Without
such checks this may cause vulnerabilities as has occurred in other cryptographic
schemes see https://ristretto.group/why_ristretto.html#pitfalls-of-a-cofactor.

As described in defect 2 the naïve approach of multiplying by q to ensure it is in
the q order subgroup is computationally expensive, other methods have been
proposed [BOW19].

The Apache Milagro library used by the URSA library when configured to be
compiled using Rust only code, does include an API to perform subgroup checks,
however we do not believe these are utilised by the URSA library to validate that
the signature is of the appropriate subgroup.

Recommendation

The URSA library should be modified to include subgroup checks during public
key validation.

It should be noted that validation of the subgroup can be computationally
expensive although some techniques allow faster subgroup checks [BOW19].

Feedback from initial Hyperledger URSA community review:

This will be raised as an issue and be subject to normal community
workflow to address issues. The community agreed that the
classification of this item as low risk was appropriate.

© IDLab, 2022 23 / 28

https://ristretto.group/why_ristretto.html#pitfalls-of-a-cofactor


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

4. Libursa BLS Module does not check public keys

Severity Medium

Description

The BLS implementation within the URSA library (libursa\src\bls\mod.rs) does not
appear to have any validation of public keys. These are required by the
BLS-signature specification [BLS].

The BLS signature scheme [BLS] specifies in its security considerations for
validating public keys that:

“All algorithms in Section 2 and Section 3 that operate on public keys require first
validating those keys. For the basic and message augmentation schemes, the use
of KeyValidate is REQUIRED.”

KeyValidate requires all public keys to represent valid, non-identity points in the
correct subgroup. A valid point and subgroup membership are required to ensure
that the pairing operation is defined (Section 5.2).

A non-identity point is required because the identity public key has the property
that the corresponding secret key is equal to zero, which means that the identity
point is the unique valid signature for every message under this key. A malicious
signer could take advantage of this fact to equivocate about which message he
signed.”

The validation of public keys is required by [BLS] in the following operations;
CoreVerify (verification of a signature), CoreAggregateVerify (Verification of an
aggregated signature over several public keys), PopVerify (Proof of possession
verification).

Related Documentation/Library

[BLS] BLS signatures, D. Boneh, S. Gorbunov, R. Wahby, H. Wee, Z. Zhang. 10 Sep
2020, https://www.ietf.org/archive/id/draft-irtf-cfrg-bls-signature-04.txt

Analysis

As pointed out by [BLS] without verification of the public keys, a malicious signer
could use a secret key of zero, and identity public keys, which result in all
signatures for those keys also being the identity point. Such a signer could then
reasonably argue they did not in fact sign any particular message, and
furthermore it is trivial for this attacker to produce a signature for any message.
The public key validation should also validate the subgroup. We have described in
other defects the importance of subgroup checks.

© IDLab, 2022 24 / 28

https://www.ietf.org/archive/id/draft-irtf-cfrg-bls-signature-04.txt


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Recommendation

The URSA library should be modified to include public key validation within the
operations using public keys as required by the BLS specification.

Feedback from initial Hyperledger URSA community review:

This has been considered in the past and not implemented due to
performance concerns. Discussion resulted in agreement to raise as
an issue for further consideration. One mitigation approach
suggested was to implement an enhancement that could be
implemented as an optional feature. For those concerned with
performance, other mitigation approaches in the form of
“implementation advice” could be used.

5. Libursa BLS Module does not perform subgroup checks on signatures

Severity Low

Description

The BLS implementation within the URSA library (libursa\src\bls\mod.rs) does not
appear to have any validation signatures. These are required by the BLS-signature
specification [BLS].

The validation of public keys is required by [BLS] in the following operations;
CoreVerify (verification of a signature), CoreAggregateVerify (Verification of a
aggregated signature over several public keys), PopVerify (Proof of possession
verification)

Related Documentation/Library

[BLS] BLS signatures, D. Boneh, S. Gorbunov, R. Wahby, H. Wee, Z. Zhang. 10 Sep
2020, https://www.ietf.org/archive/id/draft-irtf-cfrg-bls-signature-04.txt

© IDLab, 2022 25 / 28

https://www.ietf.org/archive/id/draft-irtf-cfrg-bls-signature-04.txt


DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Analysis

The BLS signature scheme [BLS] specifies in its security considerations for
validating public keys (section 5.2) that:

“This check is REQUIRED of conforming implementations, for two reasons:

1. For most pairing-friendly elliptic curves used in practice, the pairing
operation e (Section 1.3) is undefined when its input points are not in the
prime-order subgroups of E1 and E2. The resulting behaviour is
unpredictable and may enable forgeries.

2. Even if the pairing operation behaves properly on inputs that are outside
the correct subgroups, skipping the subgroup check breaks the strong
unforgeability property [ADR02].”

Therefore, as a defence against possible vulnerabilities that would enable
forgeries, we believe the URSA library should include signature validation as
specified in the BLS specification.

Recommendation

The URSA library should be modified to include signature validation within the
operations using public keys as required by the BLS specification.

Feedback from initial Hyperledger URSA community review:

This will be raised as an issue and be subject to normal community
workflow to address issues. The community agreed that the
classification of this item as low risk was appropriate.

© IDLab, 2022 26 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

6. Breaking unlinkability of Identity Mixer using malicious keys

Severity Low

Description

It is possible to mount an attack against CL-signature based Identity Mixer
whereby a malicious issuer can break unlinkability of issuance and disclosure
sessions of its credential. This can be achieved by generating a private key in such
a way that the discrete log problem becomes partially solvable for the issuer, and
then exploiting the fact that Schnorr proofs can be constructed for fractions to
pass the key as properly generated. The combined attack demonstrates the
importance of correctly proving preconditions of cryptographic systems,
especially where these are nontrivial as is the case when using RSA groups.

Related Documentation/Library

Breaking unlinkability of Identity Mizer using malicious keys, D. Venhoek, S.
Ringers. 22 Dec 2021

Analysis

This potential exploit requires a malicious Issuer. In most ecosystems, other trust
anchors are in place to prevent the participation of such Issuers. This serves to
make the likelihood of an exploit of this type very low. There is a model for
mitigation that includes generation of a complete proof of proper generation of
public keys. This method is computationally expensive and impractical in the
context of the implementation in URSA.

Recommendation

Further research into more efficient complete proof generation should be
undertaken.

Feedback from initial Hyperledger URSA community review:

This will be raised as an issue and be subject to normal community
workflow to address issues. The community agreed that the
classification of this item as low risk was appropriate. In the interim,
exposure of the issue and advice on mitigation approaches outside
the scope of URSA will be investigated.

© IDLab, 2022 27 / 28



DIGITAL IDENTITY LABORATORY OF CANADA REPORT
HYPERLEDGER URSA CODE REVIEW

Appendix A - About the Authors
The Digital Identity Laboratory of Canada (IDLab) is an independent Canadian
non-profit entity dedicated to advancing digital trust by breaking down barriers to
digital ID adoption. The IDLab promotes conformity and interoperability of
user-centric digital identity solutions. The IDLab is not an incubator and does not
develop or sell digital identity solutions. Our mission is to accelerate the adoption,
development and knowledge of compliant and interoperable digital ID solutions.

We accomplish this mission by delivering education, assessment, advisory and
sandbox services. When delivering those services, IDLab preserves its neutrality
and independence by complying with its Policy on the Limitations of Commercial
Activities.

Contributors to this report include:
● P. Roberge
● B. Daly
● N. Kettle
● M. Barker
● J. Gage
● L. Francis

© IDLab, 2022 28 / 28

https://idlab.org/en/
https://idlab.org/en/policy/
https://idlab.org/en/policy/

		2022-05-18T16:03:18-0400
	ConsignO Cloud
	Scellement initial du document afin d'empêcher toute modification ultérieure non autorisée


	



